在数据驱动的社会的时代,物联网(IoT)设备的无处不在,存储在不同地方的大量数据,分布式学习已获得了很多吸引力,但是,假设具有独立和相同分布的数据(IID)跨设备。在放松这种假设的同时,由于设备的异质性质,无论如何都无法实现现实,但Federated Learnation(FL)已成为一种保护隐私的解决方案,可以训练与大量设备分布的非IID数据进行协作模型。但是,由于不受限制的参与,打算破坏FL模型的恶意设备(攻击者)的出现是不可避免的。在这项工作中,我们旨在确定此类攻击者并减轻对模型的影响,从本质上讲,在双向标签与勾结的翻转攻击的情况下。我们通过利用本地模型之间的相关性来提出两种基于最小生成树和k-densest图的理论算法。即使攻击者最多占所有客户的70%,我们的FL模型也会消除攻击者的影响力,而先前的作品不能负担超过50%的客户作为攻击者。通过在两个基准数据集(即Mnist和Fashion-Mnist)的实验中确定我们算法的有效性,并具有压倒性的攻击者。我们使用准确性,攻击成功率和早期检测回合建立了算法优于现有算法的优势。
translated by 谷歌翻译
模拟逼真的传感器是自主系统数据生成的挑战,通常涉及精心手工的传感器设计,场景属性和物理建模。为了减轻这一点,我们引入了一条管道,用于对逼真的激光雷达传感器进行数据驱动的模拟。我们提出了一个模型,该模型可以在RGB图像和相应的LIDAR功能(例如Raydrop或每点强度)之间直接从真实数据集中进行映射。我们表明,我们的模型可以学会编码逼真的效果,例如透明表面上的掉落点或反射材料上的高强度回报。当应用于现成的模拟器软件提供的天真播放点云时,我们的模型通过根据场景的外观预测强度和删除点来增强数据,以匹配真实的激光雷达传感器。我们使用我们的技术来学习两个不同的LIDAR传感器的模型,并使用它们相应地改善模拟的LiDAR数据。通过车辆细分的示例任务,我们表明通过我们的技术增强模拟点云可以改善下游任务性能。
translated by 谷歌翻译
随着人们的生活水平的增强和通信技术的快速增长,住宅环境变得聪明且连接,从而大大增加了整体能源消耗。由于家用电器是主要的能源消费者,因此他们的认可对于避免无人看管的用途至关重要,从而节省了能源并使智能环境更可持续。传统上,通过从客户(消费者)收集通过智能插头记录的电力消耗数据,在中央服务器(服务提供商)中培训设备识别模型,从而导致隐私漏洞。除此之外,当设备连接到非指定的智能插头时,数据易受嘈杂的标签。在共同解决这些问题的同时,我们提出了一种新型的联合学习方法来识别设备识别,即Fedar+,即使使用错误的培训数据,也可以以隐私的方式跨客户进行分散的模型培训。 Fedar+引入了一种自适应噪声处理方法,本质上是包含权重和标签分布的关节损耗函数,以增强设备识别模型的能力,以抵制嘈杂标签。通过将智能插头部署在公寓大楼中,我们收集了一个标记的数据集,该数据集以及两个现有数据集可用于评估Fedar+的性能。实验结果表明,我们的方法可以有效地处理高达$ 30 \%$的嘈杂标签,同时以较大的准确性优于先前的解决方案。
translated by 谷歌翻译
复合现象在梵语中无处不在。它用于表达思想的简洁性,同时丰富语言的词汇和结构形成。在这项工作中,我们专注于梵语复合类型标识(SACTI)任务,在其中我们考虑了识别复合词组件之间语义关系的问题。早期的方法仅依赖于从组件获得的词汇信息,而忽略最关键的上下文和句法信息,对SACTI有用。但是,SACTI任务主要是由于化合物组件之间隐式编码的上下文敏感语义关系。因此,我们提出了一种新颖的多任务学习体系结构,该体系结构结合了上下文信息,并使用形态标记和依赖性解析作为两个辅助任务来丰富互补的句法信息。与最新系统相比,SACTI基准数据集上的实验显示了6.1分(准确性)和7.7点(F1得分)绝对增益。此外,我们的多语言实验证明了拟议的架构在英语和马拉地语中的功效。代码和数据集可在https://github.com/ashishgupta2598/sacti上公开获得。
translated by 谷歌翻译
集成开发环境(IDE)提供工具支持,以自动化许多源代码编辑任务。传统上,IDE仅使用空间上下文,即开发人员正在编辑的位置来生成候选编辑建议。但是,仅空间上下文通常不足以自信地预测开发人员的下一个编辑,因此IDE在某个位置会产生许多建议。因此,IDE通常不会主动提供建议,而是需要单击特定图标或菜单,然后从大量潜在建议列表中进行选择。结果,开发人员通常会错过使用工具支持的机会,因为他们不知道它存在或忘记使用它。为了更好地理解开发人员行为中的常见模式并产生更好的编辑建议,我们还可以使用时间上下文,即开发人员最近执行的编辑。为了启用基于时间上下文的编辑建议,我们提出了《守望先锋》,这是一种从IDE中执行的开发人员编辑痕迹学习编辑序列模式的新颖技术。我们的实验表明,《守望先锋》具有78%的精度,守望先锋不仅完成了开发人员错过使用IDE工具支持的机会,而且还预测了在IDE中没有工具支持的新编辑。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
随着食品交付平台的日益普及,在这些平台中研究“演出”工人的工作条件已变得相关,尤其是为他们提供公平的工资,合理的工作时间和工作可用性的透明度。但是,对这些问题的任何解决方案都不得降低客户体验,并具有成本效益,以确保平台愿意采用它们。我们建议使用Work4Food,该食品为交付代理提供收入保证,同时最大程度地降低平台成本并确保客户满意度。 Work4food确保满足收入保证的方式不会导致工作时间增加或降低环境影响。为了结合这些目标,工作4食品通过控制系统中的代理数量并根据代理人(例如代理位置,评级等因素)向代理提供动态付款保证。食品交付平台并在手头的多维目标方面建立了对最新技术的优势。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译